Sistema de información para la gestión logística: Una revisión sistemática

Autores/as

  • Luis Adonis Chavez Cerna Universidad Nacional de Trujillo, Facultad de Ingeniería, Escuela de Ingeniería de Sistemas https://orcid.org/0009-0003-4230-378X
  • Fernando Arturo Fernández Salvo Universidad Nacional de Trujillo, Facultad de Ingeniería, Escuela de Ingeniería de Sistemas
  • Juan Pedro Santos Fernández Universidad Nacional de Trujillo, Facultad de Ingeniería, Escuela de Ingeniería de Sistemas https://orcid.org/0000-0002-8882-9256
  • José Alberto Gómez Ávila Universidad Nacional de Trujillo, Facultad de Ingeniería, Escuela de Ingeniería de Sistemas https://orcid.org/0000-0002-5117-0873

DOI:

https://doi.org/10.70990/rics.v7i1.50

Palabras clave:

administración, backend, frameworks, frontend, Administración, backend, frameworks, frontend, web.

Resumen

Entender las tendencias en el desarrollo de software de gestión logística es esencial para adaptar las herramientas tecnológicas a las necesidades emergentes del sector. Se plantearon cinco problemas de investigación: identificar los frameworks backend más usados en el incremento de sistemas de gestión logística por los últimos 5 años; determinar los frameworks frontend más comunes para construir interfaces de usuario en estos sistemas; conocer las bases de datos más empleadas en sistemas web de gestión logística; evaluar las técnicas de inteligencia artificial más utilizadas en el acrecentamiento de sistemas de información de logística; para reconocer los patrones de diseño de software más aplicados en estos sistemas. Tras la indagación completa en diversas bases de documentos, se obtuvieron 455 artículos en Scopus, 36 en Scielo, 385 en Science Direct, 63 en Google Scholar, 23 en IEE Explore y 40 en DOAJ. Aplicando criterios de exclusión, se seleccionaron 53 artículos para el análisis, utilizando la metodología PRISMA. Los resultados muestran que en frameworks backend, Spring es el más utilizado con un 40%, seguido por Express.js con un 20%, mientras que Django y Ruby han caído a un 0%. En frameworks frontend, React es el más destacado con un 45%, seguido por Bootstrap con un 25%, con Vue.js y Svelte mostrando incrementos menores. En bases de datos, MySQL es predominante con un 30%, seguido por PostgreSQL y MongoDB con un 20% y 15%, respectivamente. Las técnicas de inteligencia artificial más comunes son el aprendizaje supervisado (30%), redes neuronales (25%) y procesamiento de lenguaje natural (20%). En patrones de diseño de software, Singleton lidera con un 30%, Factory Method muestra una recuperación parcial al 15%, y Strategy ha disminuido al 10%.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Ahmed, A. S., & Layeb, S. B. (2024). Systematic review of web-based decision support systems for clinical applications: Enhancing ontology with Unified Modeling Language and Ontology Web Language. TEM Journal, 77-89. doi:10.18421/tem131-08

Aleksandra Anđelković, M. R. (2018). Improving Order-picking Process Through Implementation of Warehouse Management System. STRATEGIC MANAGEMENT. Obtenido de https://www.smjournal.rs/index.php/home/article/view/17/1

Aliqulov, A. X., & Yadgarov, T. G. (2019). Development of an information and logistics system “InfLog-CredSys” for managing big data in the yii framework for use in a credit training system. 2019 International Conference on Information Science and Communications Technologies (ICISCT). IEEE. doi:10.1109/icisct47635.2019.9011873

Arias-Marreros, R., Nalvarte-Dionisio, K., & Andrade-Arenas, L. (2021). Design of a web system to optimize the logistics and costing processes of a chocolate manufacturing company. International journal of advanced computer science and applications : IJACSA, 12(8). doi:10.14569/ijacsa.2021.0120897

Baratta, A., Cimino, A., Longo, F., & Nicoletti, L. (2024). Digital twin for human-robot collaboration enhancement in manufacturing systems: Literature review and direction for future developments. Computers & industrial engineering, 187(109764), 109764. doi:10.1016/j.cie.2023.109764

Bigliardi, B., Bottani, E., & Filippelli, S. (2022). A study on IoT application in the Food Industry using Keywords Analysis. Procedia computer science, 200, 1826-1835. doi:10.1016/j.procs.2022.01.383

Bitsch, G., Senjic, P., & Askin, J. (2022). Dynamic adaption in cyber-physical production systems based on ontologies. Procedia computer science, 200, 577-584. doi:10.1016/j.procs.2022.01.255

Chaudhari, N. (2019). Impact of Automation Technology on Logistics and Supply. American Journal of Theoretical and Applied Business. doi: 10.11648/j.ajtab.20190503.12

Chiurco, A., Elbasheer, M., Longo, F., Nicoletti, L., & Solina, V. (2023). Data modeling and ML practice for enabling intelligent digital twins in adaptive production planning and control. Procedia computer science, 217, 1908-1917. doi:10.1016/j.procs.2022.12.391

de Paula Ferreira, W., Armellini, F., & De Santa-Eulalia, L. A. (2020). Simulation in industry 4.0: A state-of-the-art review. Computers & industrial engineering, 149(106868), 106868. doi:10.1016/j.cie.2020.106868

Demin, V., & Terentyev, A. (2021). Multicriterial evaluation of the transport and logistic system of the Moscow region. MATEC web of conferences, 334, 02029. doi:10.1051/matecconf/202133402029

Espinel Villalobos, R. I., Ardila Triana, E., Zarate Ceballos, H., & Ortiz Triviño, J. E. (2021). Design and implementation of network monitoring system for campus infrastructure using software agents. Ingeniería e Investigación, 42(1), e87564. doi:10.15446/ing.investig.v42n1.87564

Farooq, M., Abdullah, M., Riaz, S., Alvi, A., Rustam, F., Flores, M., . . . Ashraf, I. (2023). A Survey on the Role of Industrial IoT in Manufacturing for Implementation of Smart Industry. Sensors. doi:https://doi.org/10.3390/s23218958

Fergani, C., Bouzekri El Idrissi, A. E., Hajjaj, A., & Marcotte, S. (2020). Production modeling towards sustainable hyperconnected logistics. 2020 5th International Conference on Logistics Operations Management (GOL). IEEE. doi:10.1109/gol49479.2020.9314729

Fergani, C., El Idrissi, A. E., Hajjaj, A., & Marcotte, S. (2019). Physical Internet Characterization. 2019 International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA). IEEE. doi:10.1109/logistiqua.2019.8907244

Grillo, H., Alemany, M. M., & Caldwell, E. (2022). Human resource allocation problem in the Industry 4.0: A reference framework. Computers & industrial engineering, 169(108110), 108110. doi:10.1016/j.cie.2022.108110

Heinbach, C., Meier, P., & Thomas, O. (2022). Designing a shared freight service intelligence platform for transport stakeholders using mobile telematics. Information systems and e-business management, 20(4), 847-888. doi:10.1007/s10257-022-00572-5

Klees, M., & Evirgen, S. (2022). Building a smart database for predictive maintenance in already implemented manufacturing systems. Procedia computer science, 204, 14-21. doi:10.1016/j.procs.2022.08.002

Kumar Singh, R., Mishra, R., Gupta, S., & Mukherjee, A. A. (2023). Blockchain applications for secured and resilient supply chains: A systematic literature review and future research agenda. Computers & industrial engineering, 175(108854), 108854. doi:10.1016/j.cie.2022.108854

Kumar, D., Kr Singh, R., Mishra, R., & Fosso Wamba, S. (2022). Applications of the internet of things for optimizing warehousing and logistics operations: A systematic literature review and future research directions. Computers & industrial engineering, 171(108455), Computers & industrial engineering. doi:10.1016/j.cie.2022.108455

Lang, S., Reggelin, T., Müller, M., & Nahhas, A. (2021). Open-source discrete-event simulation software for applications in production and logistics: An alternative to commercial tools? Procedia computer science, 180, 978-987. doi:10.1016/j.procs.2021.01.349

Le, T. V., & Fan, R. (2024). Digital twins for logistics and supply chain systems: Literature review, conceptual framework, research potential, and practical challenges. Computers & industrial engineering, 187(109768), 109768. doi:10.1016/j.cie.2023.109768

Liu, X., Barenji, A. V., Li, Z., Montreuil, B., & Huang, G. Q. (2021). Blockchain-based smart tracking and tracing platform for drug supply chain. Computers & industrial engineering, 161, 107669. doi:10.1016/j.cie.2021.107669

Liu, Z., & Guo, P. (2020). Visual comparative analysis of green logistics research at home and abroad based on knowledge map. DOAJ (DOAJ: Directory of Open Access Journals). doi:10.7535/hbkd.2020yx03009

Longo, F., Padovano, A., Gazzaneo, L., Frangella, J., & Diaz, R. (2021). Human factors, ergonomics and Industry 4.0 in the Oil&Gas industry: a bibliometric analysis. Procedia computer science, 180, 1049-1058. doi:10.1016/j.procs.2021.01.350

Longo, F., Padovano, A., Gazzaneo, L., Frangella, J., & Diaz, R. (2021). Human factors, ergonomics and Industry 4.0 in the Oil&Gas industry: a bibliometric analysis. Procedia computer science, 180, 1049-1058. doi:10.1016/j.procs.2021.01.350

Ma, Y., Mockus, A., Zaretzki, R., Bradley, R., & Bichescu, B. (2022). A methodology for analyzing uptake of software technologies among developers. IEEE transactions on software engineering, 48(2), 485-501. doi:10.1109/tse.2020.2993758

Miklautsch, P., & Woschank, M. (2022). Decarbonizing Industrial Logistics. IEEE engineering management review, 50, 149-156. doi:10.1109/emr.2022.3186738

Mirabelli, G., Nicoletti, L., Padovano, A., Solina, V., Manfredi, K. A., & Nervoso, A. (2023). Exploring the role of industry 4.0 and simulation as a solution to the COVID-19 outbreak: A literature review. Procedia computer science, 217, 1918-1929. doi:10.1016/j.procs.2022.12.392

Mordaschew, V., Duckwitz, S., & Tackenberg, S. (2024). A human digital twin of disabled workers for production planning. Procedia computer science, 232, 745-751. doi:10.1016/j.procs.2024.01.074

Mumali, F., & Kałkowska, J. (2024). Intelligent support in manufacturing process selection based on artificial neural networks, fuzzy logic, and genetic algorithms: Current state and future perspectives. Computers & industrial engineering, 193(110272), 110272. doi:10.1016/j.cie.2024.110272

Munoz-Ausecha, C., Ruiz-Rosero, J., & Ramirez-Gonzalez, G. (2021). RFID applications and security review. Computation (Basel, Switzerland), 9, 69. doi:10.3390/computation9060069

Pankaj Dutta, T.-M. C. (2020). Blockchain technology in supply chain operations: Applications, challenges and research opportunities. Transportation Research Part E: Logistics and Transportation Review, 142. doi:https://doi.org/10.1016/j.tre.2020.102067

Perez-Garcia, C. A., Pérez-Atray, J. J., Hernández-Santana, L., Gustabello-Cogle, R., & Becerra-De Armas, E. (2019). Sistema de Información Geográfica para la agricultura cañera en la provincia de Villa Clara.

Saad, S. M., Bahadori, R., Jafarnejad, H., & Putra, M. F. (2021). Smart production planning and control: Technology readiness assessment. Procedia computer science, 180, 618-627. doi:10.1016/j.procs.2021.01.284

Samadhiya, A., Agrawal, R., Kumar, A., & Garza-Reyes, J. A. (2023). Regenerating the logistics industry through the Physical Internet Paradigm: A systematic literature review and future research orchestration. Computers & industrial engineering, 178(109150), 109150. doi:10.1016/j.cie.2023.109150

Schierhorst, N. J., Johnen, L., Fimmers, C., Lohrmann, V., Monnet, J., Zhang, H., . . . Nitsch, V. (2024). Hybrid intelligence in production systems and its effects on human work: Insights from four use-cases. Procedia computer science, 232, 2901-2910. doi:10.1016/j.procs.2024.02.106

Segura, Á., Diez, H. V., Barandiaran, I., Arbelaiz, A., Álvarez, H., Simões, B., . . . Ugarte, R. (2020). Visual computing technologies to support the Operator 4.0. Computers & industrial engineering, 139(105550), 105550. doi:10.1016/j.cie.2018.11.060

Serrano-Ruiz, J. C., Mula, J., & Poler, R. (2021). Smart master production schedule for the supply chain: A conceptual framework. Computers, 10, 156. doi:10.3390/computers10120156

Sharma, S., Tripathi, S. K., & Sinha, S. (2023). Internet-of-things enabled automation of E-logistic framework for healthcare sector in smart cities. 2023 International Conference on Electrical, Electronics, Communication and Computers (ELEXCOM). IEEE. doi:10.1109/elexcom58812.2023.10370199

Singh, B. (2022). Futuristic Research Trends and Applications of Internet of Things. En B. Singh, Industrial internet of things (págs. 229-248). Boca Raton: CRC Press. doi:10.1201/9781003244714-11

Tan, H., & Reed, S. M. (2022). Metabolovigilance: Associating drug metabolites with adverse drug reactions. Molecular informatics, 41(6), e2100261. doi:10.1002/minf.202100261

Telukdarie, A., Dube, T., Matjuta, P., & Philbin, S. (2023). The opportunities and challenges of digitalization for SME's. Procedia computer science, 217, 689-698. doi:10.1016/j.procs.2022.12.265

Tsetskhladze, L., Makharadze, N., Chkhaidze, I., Jabnidze, N., & Baratashvili, N. (2021). Actual problems for logistics management and strategies of supply chain in Georgia. MATEC web of conferences, 339, 01004. doi:10.1051/matecconf/202133901004

Tsolaki, K. V. (s.f.). Utilizing machine learning on freight transportation and logistics applications: A review. ICT Express, 9, 284-295. doi:https://doi.org/10.1016/j.icte.2022.02.001

Turer, R. W., Gradwohl, S. C., Stassun, J., Johnson, J., Slagle, J. M., Reale, C., . . . Arnold. (2024). User-centered design and implementation of an interoperable FHIR application for pediatric pneumonia prognostication in a randomized trial. Applied clinical informatics, 15(3), 556-568. doi:10.1055/a-2297-9129

Vaz, D., Matos, D. R., Pardal, M. L., & Correia, M. (2023). MIRES: Intrusion Recovery for Applications Based on Backend-As-a-Service. IEEE transactions on cloud computing, 11, 2011-2027. doi:10.1109/tcc.2022.3178982

Woschank, M., Steinwiedder, D., Kaiblinger, A., Miklautsch, P., Pacher, C., & Zsifkovits, H. (2022). The integration of smart systems in the context of industrial logistics in manufacturing enterprises. Procedia computer science, 200, 727-737. doi:10.1016/j.procs.2022.01.271

Wu, P.-J., & Chien, C.-L. (2021). AI-based quality risk management in omnichannel operations: O2O food dissimilarity. Computers & industrial engineering, 160(107556), 107556. doi:10.1016/j.cie.2021.107556

Xiao, Y., Yun-chao, M., Jian, X., Shan, B., & Jiao, L. (2020). Research on automated warehouse scheduling system based on double label and sorting algorithm. MATEC web of conferences, 325, 05001. doi:10.1051/matecconf/202032505001

Zheng, T., Glock, C. H., & Grosse, E. H. (2022). Opportunities for using eye tracking technology in manufacturing and logistics: Systematic literature review and research agenda. Computers & industrial engineering, 171(108444), 108444. doi:10.1016/j.cie.2022.108444

Descargas

Publicado

2025-12-31

Número

Sección

Artículo de Revisión

Cómo citar

Sistema de información para la gestión logística: Una revisión sistemática. (2025). Revista De Ingeniería, Ciencias Y Sociedad, 7(1), 80-102. https://doi.org/10.70990/rics.v7i1.50